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Numerical solutions for laminar, fully developed, forced convective heat transfer in ecccentric 
annuli are presented.With an insulated outer surface, two types of thermal boundary conditions 
have been considered: constant wall temperature (T), and uniform axial heat flux with constant 
peripheral temperature (/4/) on the inner surface of the annulus; these are representative of many 
practical applications. Isothermal friction factors and Nusselt numbers for concentric annulus are 
in excellent agreement with previously reported results. Velocity and temperature profiles, and 
isothermal fRe, Nuo; and Nu~ values for different eccentric annuli (0 < t* < 0.6) with varying as- 
pect ratios (0.25 < r* < 0.75) are presented. The eccentricity is found to have a strong influence 
on the flow and temperature fields. The flow tends to stagnate in the narrow section and has 
higher peak velocities in the wide section. This flow maldistribution is found to produce greater 
nonuniformity in the temperature field and a degradation in the average heat transfer. Also, results 
show that the H/condition sustains higher heat transfer coefficients relative to the T condition 
on the inner surface, except for very large eccentricity. 
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Introduction 

Steady-state, laminar forced convection heat transfer in circular and 
concentric annular ducts has been studied quite extensively (Shah 
and London 1978; Kaka~ et al. 1987). This reflects the fact that 
these geometries are found in many industrial heat exchangers. For 
example, the simplest form of a two-fluid heat transfer device is a 
double-pipe heat exchanger made up of two concentric circular 
tubes, thereby presenting circular and annular duct flow geome- 
tries. The annular channel in the heat exchanger may be concentric 
or eccentric. Quite often, the eccentricity stems from manufactur- 
ing tolerances and/or deformation in the service of a nominally 
concenu'ic annular duct configuration. In this case, the eccentricity 
may tend to be small; however, in some applications, design and 
construction considerations may result in a large eccentricity. 
Typical examples of the latter are oil/gas drilling wells, polymer/ 
plastic extruders, and nuclear reactors. 

In most double-pipe heat exchanger applications, where an 
eccenUic annular flow geometry may exist, two primary thermal 
boundary conditions are usually encountered. These are uniform 
wall temperature (7), or uniform wall heat flux (HI) on the inner 
surface with an insulated (adiabatic) outer surface. These 
conditions essentially represent the thermal boundaries in a two- 
fluid heat exchanger for the cases where the inner tube fluid 
undergoes phase-change (boiling or condensation), or the inner and 
outer fluid flows have the same capacity rates, respectively. The 
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first case corresponds to the fundamental boundary condition of the 
third kind for doubly connected ducts, and the second case is a 
modification of boundary condition of the fifth kind. For a detailed 
explanation of these fundamental boundary conditions, the 
monograph by Shah and London (1978) may be referred. Laminar 
flow heat transfer results for these two practical flow situations do 
not appear to have been presented in the literature for eccentric 
annuli (Shah and London 1978; Shah and Bhatti 1987). 

An extended study of fully developed laminar flows in 
concentric annular ducts with four fundamental boundary condi- 
tions was conducted by Lundberg et al. (1963). Based on their 
analytical results, Shah and London (1978) have tabulated friction 
factor and Nusselt number values for the boundary conditions of 
the first, second, and third kind for different radius (or aspect) 
ratios; the fourth and fifth kinds are identical for concentric annuli 
and can be evaluated from the first kind results. For the case with 
HI condition on the inner wall and insulated outer wall in a 
concentric annular channel, Capobianchi and Irvine (1992) have 
reported results for fully developed laminar flows of modified 
power-law fluids. Here, the Newtonian fluid solutions correspond 
to the results for low shear rates and a flow behavior index of unity. 
Herwig and Klemp (1988), and Moghadam and Aung (1990) have 
presented extended solutions that account for temperature- 
dependent fluid property variations. 

Laminar forced convection heat transfer in eccentric annuli was 
first considered by Cheng and Hwang (1968), and Trombetta 
(1971). In the study by Trombetta, results for fundamental 
boundary conditions of  the fh-st, second, and fourth kind have 
been presented for different eccenl~'icities and radius ratios. Cheng 
and Hwang considered the HI boundary condition on both walls of 
the annular duct. In a more recent work, Suzuki et al. (1991) have 
reported finite-difference solutions for thermal boundary condition 
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of the second kind. Howeve,, as pointed out by them, this condition 
(uniform axial and peripheral heat flux on the inner wall) is not 
usually obtained in most practical applications. A more relevant 
case is to consider the H I  condition (uniform axial heat flux with 
constant peripheral wall tetaperature) on the inner wall attributable 
to the high thermal conductivity of the metallic tubing normally 
used in heat exchangers; this is addressed in the present study. 
Some of the earlier studies--Snyder and Goldstein (1965), Jonsson 
and Sparrow (1965), and Pierey et al. (1933), among others-- 
focused only on the fully developed hydrodynamic problem. 

As outlined above, this study presents numerical solutions for 
fully developed laminar flow heat transfer in eccentric annular 
channels. Two different thermal boundary conditions are consid- 
ered on the inner surface (the outer surface being insulated), that 
are representative of the practical usage of two-fluid, double-pipe 
heat exchangers. The numerical solutions are obtained using finite- 
difference techniques. Friction factor and Nusselt number results 
are presented for a wide mage of eccentricities and channel radius 
ratios. Variations in the local velocity and temperature fields are 
also presented to highligkt the influences of the geometry and 
boundary conditions. 

M a t h e m a t i c a l  f o r m u l a t i o n  

Laminar flow in a straight eccentric annular duct bounded by an 
outer radius re and an inner radius ri is considered. The origin of 
the cylindrical coordinate system is placed at the center of the inner 
cylinder, which is located off-center from the outer cylinder with an 
eccentricity e, as shown in Figure 1, so that th_e outer cylinder 
surface is described by the shape function R(~). The constant 
property, Newtonian fluid flow is both hydrodynamically and 
thermally fully developed, and axial conduction, viscous dissipa- 
tion, and effects of body fi>rces are ignored. These are reasonable 
considerations for most viscous liquid flows with large Pr, (Re.Pr), 
and (L/dh) (Shah and London 1978; Mangiik and Bergles 1994). 
With the outer cylinder surface being thermally adiabatic, two 
different thermal boundary conditions on the inner cylinder are 
considered: constant temperature (T) and constant axial heat flux 
but peripherally constant temperature (HI). The corresponding 
momentum and energy ~uations in the cylindrical coordinate 
system of Figure 1 are as follows: 

#V2~, -- (ap/d~) = 0 (1) 
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Physical domain and coordinate system for an eccentric annu- 
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- ~a~/a~)  = 0 

where 

V2 1 a r_ a-I 1 0 2 
= r ~  L r ~ / + ~  ~--~ 

and for thermally fully developed flows 

r f w - f ]  d~'m fo rT  
a~ Lrw - ~J  
a~ dL 

for H I  
d~ 

(2) 

(2a) 

(2b) 

N o t a t i o n  

Ac axial flow cross-sectional area, m 2 
B dimensionless shape function, Equations (4-6) 
% specific heat at constant pressure, kJ/(kg K) 
dh hydraulic diameter, = 2(re - r3, m 
f fanning friction t~'tor =(-dp/dX)dh/(2pw2m) 
h 2 heat transfer co¢l$cient, W/(m K) 
H I  uniform axial heat flux with constant peripheral wall 

temperature boundary 
k fluid thermal conductivity, W/(m K) 
Nu hydraulic diamet~ based Nusselt number = hdh/k 
p pressure, Pa 
Pw wetted perimeter, m 
q" average wall heat flux on the inner surface, w/m 2 
Q~ dimensionless peripherally average heat flux on the 

inner surface, Equation 16 
P radial coordinate, m 
r dimensionless radial coordinate = (? -- ri)/Bro, 

Equation 4 
r* radius ratio of the annulus =r/ro 
R shape function, [kluation 5 

R e  

T 

T 

W 

Greek 

O~ 

g 

IZ 
P 

hydraulic diameter based Reynolds number = p~=dh//~ 
constant wall temperature boundary 
local fluid temperature, K 
dimensionless temperature, Equations 9a-b 
axial velocity, m/s 
dimensionless axial velocity, Equation 8 
axial coordinate, m 

thermal diffusivity, m2/s 
eccentricity or displacement of inner cylinder, m 
dimensionless eccentricity = el(re - ri) 
fluid dynamic viscosity, kg/m s 
fluid density, kg/m 3 
angular coordinate, rad 

Subscripts 

i outer surface of inner cylinder 
m mean or bulk average 
o inner surface of outer cylinder 
w at the outer wall of inner cylinder 
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Equations 1 and 2 are subject to the following boundary 
conditions: 

fv = O, ? = ri; ~ = 0, ? = R(~) (3a) 

= ]'w, ~ = r/; ~-g = 0, ? = R(~) (3b) 

The eccentric annular duct of Figure 1 can be mapped into a unit 
circle and rendered dimensionless by the following coordinate 
transformation (Prusa and Yao 1983): 

~" - -  ri 
r = B~)ro' ~ = ~ (4) 

Here, B(~,) is the dimensionless shape function that is defined as 
follows: 

B(~) = (R(~) -- ri)/ro (5) 

and for the eccentric annular shape it is given by the following: 

BOp ) = [1 - e .2 (1 - r*) 2 sin 2 ¢ ] 1 / 2  - -  e*(1 - r*)cos¢  - r* (6) 

where 

r* = ri/ro, e* = e/(ro -- ri) (7) 

Also, the dimensionless velocity w and temperature T are defined 
as follows: 

w = fv/[(-d~/dYc)d~/#] (8) 

[~(_I'g, -_T)/[d~fvm(dl'm/dYc)] fo r  r (9a) 

r = [ ( T w -  T)/(q dh/k) for H I  (9b) 

Thus, the dimensionless form of the governing momentum and 
energy equations are 

M 02w M 02w 02w 22-~-~ + S~bl 0 (10) 
l '~Tr2 + 2 0-~ + M3 0 - ~  + o r  = 

M ~ r  M ~ T  ~ T  + aT 1-~r2+ 2~"l-M3orÜ~ I 2 ' ~ r  + $4,2 -- 0 

where 

1 r 2 B a 1 
MI = -~  -t (Br + r*) 2 B 2 ' M2 -- (Br + r*) - - - - - - ~ 2 '  

2r f f  
M3 -- (Br + r*) 2 B 

1 [  1 r (2B'2 B'~)] 

= ~ -s(s;+ : )  + isr +:Y  \ s~ - 

(11) 

1 w T forT 
1 S~2 = 4 (1  - r * )  2 Wm Tm 

S~I 4(1 - r*) 2' r* w for H I  
(1 + r*)(1 - r*) 2 Wm 

Equations 10 and 11 are subject to the following boundary 
conditions: 

w = O , r = O , O < ~ < 2 ~ ; w = O , r = l , O < ~ < 2 n  (12a) 

aT 
T = O , r = O , O < O < 2 ~ z ; - ~ = O , r = l , O < _ ~ < 2 n  (12b) 

Note that B ' =  (dB/d~), and B " =  (d2B/d~ 2) in the above expres- 
sions. 

Given the velocity and temperature fields, the friction factor and 
the Nusselt number are the two global parameters of design interest 

that need to be evaluated. From a force balance across the flow 
cross section and its simplification, the hydraulic diameter based 
Fanning friction factor is given by 

fRe  = 1/(2win) (13) 

The dimensionless mean flow velocity Wm can be calculated from 
its definition as 

Wm lt(1 r .2) wB(Br + r*)d0 dr (14) 

For the Nusselt number, 
definition is employed and 

hdh [ (Qwi/rm) 
Nu = --if- = [(1/Tm ) 

the usual hydraulic diameter based 

for T 
for H I  (15) 

where the dimensionless heat flux on the inner cylinder Qwi is 
given by 

__ (1 r=0 

- r* )  f2n 1 a T  
Qw, J0 s ~ -  dg, (16) 

and the dimensionless bulk temperature Tm by 

1 1 2n 

Thus, Equations 10-17 provide the complete formulation for the 
velocity and temperature fields and the correspondingfand Nu for 
eccentric annular ducts. 

Numerical Solution 

To obtain solutions for the partial differential equations that 
describe the velocity and temperature fields, finite-difference 
methods have been employed in this study. The finite differencing 
strategies that have been adopted essentially follow those of Prusa 
and Yao (1982) and Manglik and Bergles (1994). The transformed 
space for the flow field described by Equations I 0 and 11 is divided 
into a mesh of radial lines intersecting circular arcs concentric with 
the boundary r = 1, with Nr radial nodes and Ns angular nodes. 
The nodes in the radial and angular directions have uniform 
spacing of Ar and A~, respectively. For Equations 10 and 11, 
second-order accurate, centered differencing is employed for the 
radial and angular diffusion terms. The mixed derivative, (02/Or~), 
is also represented by a second-order scheme by employing double 
Taylor series expansions. The radial convective terms is repre- 
sented by a modified central-difference scheme that incorporates 
upwind differencing with a correction term, and the second-order 
accuracy is essentially achieved by using both terms (Mangllk and 
Bergles 1991). 

All the boundary conditions for w(r, ~), and T(r, 0) are very 
straightforward Dirichlet conditions, with the exception of the 
adiabatic outer cylinder surface for the temperature field. Here zero 
heat flux is prescribed at the r = 1 boundary, and, in terms of the 
temperature gradient, it follows that 

(erYr*)~-J ar s ( s r + , - * ) ~  ,=~ 
(18) 

Consequently, the local wall temperature can be calculated by 
employing a second-order representation of the first derivatives 
(Anderson et al. 1984). Furthermore, to calculate the peripherally 
averaged wall heat flux from Equation 16, the derivative for the 
wall gradient was represented by a three-point second-order 
scheme. 

The finite-difference equations for the velocity and temperature 
fields were solved by the Gauss-Seidel, point-iterative scheme 
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Table I Comparison of friction factor and Nusselt number results for fully developed laminar flow in concentric annuli 

fRe Nu~ NU~H~ 

r" Present Shah and Present Shah and Present Capobianci and 
study London (1978) study London (1978) study Irvine (1992) 

0.00 16.000 oo 
0.05 21.564 21.567 17317 17.460 17709 
0.10 22.342 22.343 11.474 11.560 11.865 
0.25 23.302 23.302 7.343 7371 7728 
0.30 23.461 23.461 6.828 7.218 
0.40 23.679 23.678 6.148 6.563 
0.50 23.811 23.813 5.733 5.738 6.162 
0.60 23.896 23.897 5.443 5.894 
0.70 23.949 23.949 5.229 5.704 
0.75 23.967 23.967 5.146 5.593 
0.90 23.995 23.996 4.950 5.422 
0.95 23.998 23.999 4.899 5.377 
1.00 24.000 4.861 

11.938 

7.274 
6.588 
6.185 
5.915 
5.723 

5.681 

5.387 

along with the use of SOIL An overrelaxation factor of co = 1.4 
was employed for all computations. The iterative convergence was 
established when the relative error in the dependent variable 
between two successive iterations was less than 10 -6 throughout 
the computational domain. For the temperature solution, it was 
necessary to apply underrelaxation to the adiabatic wall tempera- 
tures in order to obtain stable and convergent solutions; a factor of 
co = 0.8 was used. The average axial velocity and the bulk mean 
temperature were determined by numerical integration using the 
Simpson's rule (combinat~ion of 3/8 and 1/3 rules). Also, the 
peripherally average heat flux for the T condition, given by 
Equation 16, was obtained by a heated-surface-area averaged 
summation of the wall derivatives. 

The grid size is very important to the convergence and accuracy 
of the solutions, especially when the radius ratio is small, and the 
eccentricity is large. In the present study, the accuracy and the 
concomitant grid refinement were established by comparing the 
results for concentric annular ducts with those reported in the 
literature. This is given in Table 1, where results for (/Re), Nui, a~ 
and Nui~,l are presented. Here, the (/Re) and Nui:r values given by 
Shah and London (1978) are from analytical solutions; the Nui.r 
values are based on the solution of Lundberg et al. (1963). The 
Nui.m results of Capobianchi and Irvine (1992) are from a finite- 
difference solution. As can be seen from Table 1, excellent 
accuracy is established in the present results (the maximum 
deviatio in the present values is less than 1%). These were obtained 
with grid sizes ranging from 21 x 61 to 61 x 61, with the finer 
mesh used for the small radius ratio ducts. The same mesh size was 
used to generate the eccenlxic annular duct results. In these cases, 
starting from a course mesh, grid refinement was effected till the 
change in the numerical results for (/Re) was less than 1%. 
However, it may be noted that for very small radius ratio and very 
large eccentricity, the mapping of the duct geometry by R(~b) 
results in a lack of orthogonality in the coordinate system. 
Consequently, some numerical errors will exist for these extreme 
cases no matter how refined a grid is used. 

Resul ts  and d iscussion 

Numerical results for both local variables (w and 7) and global 
paramerers (fRe and Nu) are presented for eccentric annular ducts. 
These reflect the influence of the eccentricity and aspect ratio of the 
annulus on the flow field, as well as the effect of thermal boundary 
conditions on the convective transport. Several different duct 

geometries have been 
0.25 < r* _< 0.75, which 
applications. 

considered with 0 < e* < 0.6 and 
is representative of many practical 

Velocity and temperature f ield 

The eccentricity of an annular duct geometry has a strong influence 
on the laminar flow velocity distribution. This is seen in Figure 2, 
where the dimensionless axial velocity profiles, normalized by the 
mean velocity, are presented for r* =0.5 and 0 < e* < 0.6. As 
eccentricity increases, the flow velocity tends to have a sharper 
profile with higher gradients and peak velocities in the widest end 
of the annulus (~ = 180°). At the narrowest end (~ = 0°), on the 

~ , 0  i i i I [ I t i i I I I r J i [ I I I 

r*  = 0 . 5  180 ° 
'~ = 180" 

. . . . . .  ~ = 0  

2.0 

1.0 

' t  

0.0 
0.0 0.5 1.0 

T 

Figure 2 Effect of eccentricity on radial distribution of axial velocity in 
the widest and narrowest gap of annulus 
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/ / 

/ / , 
/ 

. . . .  -" ~ _ - 0  o 

0 3 0  6 0  9 0  1 2 0  1 5 0  1 8 0  

Figure 3 influence of eccentricity and aspect ratio on the peak flow 
velocity distribution around the annulus 

other hand, the channel restriction causes the peak velocity to 
decrease drastically, and the flow becomes effectively immobile for 
e* > 0.6. In fact, the angular distribution of the relative magnitude 
of the peak velocities [Wm~x/Wm(~k)] can be considered as a measure 
of local fluid mobility around the annulus. This is illustrated in 
Figure 3, where the variations in (W,~x/Wm) with ~k for r* = 0.25, 
0.50, and 0.75, and e* = 0, 0.2, and 0.6 in each case are given. In a 
concentric annulus e* = 0 ,  the peak axial velocity is constant. 
However, for the case of r* = 0.5 and e* = 0.2, for example, (w~, /  
w,,) is 33.3% higher in the wide side and 38.7% lower in the 
narrow side of the annulus, relative to the concentric duct. These 
values change to 54% and 89.7%, respectively, when e* = 0.6; the 
narrow section's flow blockage results in higher velocities in the 
wider annular gap. 

Two different thermal boundary conditions have been consid- 
ered in this study: (1) constant temperature (13 on the inner surface 
and adiabatic outer surface (boundary condition of the 3rd kind); 
and (2) constant axial heat flux with constant peripheral 
temperature ([11) on the inner surface and adiabatic outer surface 
(modified 5th kind boundary condition). The effect of eccentricity 
of the annular duct on the temperature profiles for these two cases 
is illustrated in Figure 4a and 4b, respectively. Dimensionless 
temperature profiles T(r)/T,, are presented for r* = 0.5 and e* = 0, 
0.05, 0.2, and 0.6 at ~b = 0 ° and 180 °. With higher velocities in the 
wider gap of the annulus, there are sharp temperature gradients in 
the flow; whereas, the almost stagnant fluid in the narrow gap tends 
to uniformly attain the inner wall temperature as ~* increases. 
However, with increasing ~*, the temperature gradients tend to 

2 . 5  

2 . 0  

1 .5  

1 .0  

0 . 5  

! 80 ° 

D 
¥ =0"  

/ 

r* = 0 .5  
1~ = 1 8 0  ° 
1 ~ = 0  ° 

/ 

/ . /  

/ 

/ 

¢ * =  0 . 6  

E* = 0.05 

¢* =0.6 

I "~'=o 

~* = 0.05 

2 .0  

1 .5  

0 . 5  

r*  : 0 .5  
1~ = 180°  

. . . . . .  1 ~ = 0  ° 

180 ° 

D 
¥ = 0 "  ~ 

e* = 0,2 

s* = 0 . 6  

¢ 

~1 1 I /  

s I 
I t 

s* = 0.2 

o o  fi" J o.o " ,.=o., 
0 .0  0 .5  1 .0  0 .0  0 .5  1.0 

7" 'T' 

(a) (b) 

Figure 4 Effect of eccentricity on the radial variation of temperatuere in the widest and narrowest gap: (a) T condition, and (b)/41 condition on 
the inner wall 
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r* = 0.75 

r" = 0.25 

r' = 0.25 

r° = 0 .50  

r* = 0 .75  

1 .0  

R'gure 5 Effect of annulus aspect ratio on the radial variation of temperature in the widest and narrowest gap: (a) T condition, and (b)/41 condition 
on the inner wall 

decrease over most sections around the annulus, reflecting the 
worsensing heat transfer behavior. In the widest gap (~ = 180°), 
initially with small eccentricity (5* ~ 0.05 - 0.2), the temperature 
gradient tends to increase~, but reduces drastically for larger 5*, as 
seen from Figure 4. The H1 condition tends to sustain this trend for 
slightly higher eccentricity ( t * ~  0.2) relative to the T condition 
(optimum at 5" ~0.05); the constant heat flux case generally 
produces higher heat mmsfer coefficients in duct flows. The 
correponding effects of :~spect ratio of the duct are evident in 
Figure 5, where the radial temperature distribution for 5" =0.2 and 
r* =0.25, 0.50, and 0.75 at ~ = 0  ° and 180 ° are presented. With 
large values of r*, even a small eccentz'icity has a strong influence 
on the temperature field. In fact, while the temperature gradient 
increases sharply with increasing r* in the widest gap, it is more 
than negated by the large= detioration in the narrowest gap of the 
annulus. 

Increasing the eccentricity 5" and reducing the radius ratio r* of 
the annulus geometry results in large nonuniformities in the axial 
velocity and temperature fields. This is clearly evident from Figures 
6 and 7, where the isovelocity and isothermal contours for several 
different cases and the two boundary conditions are presented. 
Figure 6 shows the effect of eccentricity (r* = 0.5, e*= O, 0.05, 
and 0.6) on the fluid flow and temperature distribution around the 
annulus, and Figure 7 shows the influence of the aspect ratio of the 
duct geomelry (r* = 0.25, 0.5, and 0.75, with 5" = 0.2). As can be 
seen from these figures, with a moderate aspect ratio (r* = 0.5) of 
the annulus, even a small degree of eccentricity produces 
significant distortions in l~th the velocity and temperature fields. 
The flow tends to stagnate in the narrow sections of the annulus 

and "squeeze" higher flow velocities in the wider sections. 
Thermally, the T boundary condition on the inner wall results in 
greater asymmetzies in the temperature distribution around the 
annulus, as compared with the H1 condition. In both cases, 
however, local hot or cold regions are generated in the flow field 
with sharp differences in local temperature gradients. This flow 
maldistribution and inhomogeneity in the temperature field is 
particularly detrimental in thermal-processing applications in the 
food and chemical industry; such conditions would lead to 
excessive thermal degradation of the fluid product. The thermal 
maldistribution is enhanced even more significantly when the 
aspect ratio increases in a moderately eccentric annulus (5* = 0.2, 
Figure 7). 

Friction factor and Nusselt number 

Given the velocity and temperature distributions, the respective 
friction factor and Nusselt number values are the results of primary 
design interest. As indicated earlier, a wide variation in the aspect 
ratio (0.25 < r* < 0.75) and eccentricity (0 < 5" < 0.6) of the 
annulus geometry has been considered in this study. The 
corresponding results for fRe,  Nu~,T and Null1 are presented in 
Table 2. 

The isothermal friction factor results can be compared with the 
values tabulated by Shah and London (1978); the latter are based 
on the analytical solutions of Piercy et al. (1933) and Tiedt (1966, 
1967). As can be seen from Table 2, there is excellent agreement 
between these results and those obtained in the present study. There 
is, however, some deviation for large values of 5*(>0.6), 
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(a) (a) 

S , 
I I ~ ¢* •0.05 
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\ \ \  05 

(b) 
(b) 

(c) (c) 

R'gure6 Isove loc i tyandisothermalcontourmapsfor r*=0.5andTand Figure 7 Isovalocity and isothermal contour maps for 5 "=0 .2  and T 
/4 /  boundary conditions on the inner wall: (a) 5" = 0, (b) 5" = 0.05, and and #.#1 boundary conditions on the inner wall: (a) r* = 0.25, (b) r" = 0.5, 
(c) 5" = 0.6 and (c) r* = 0.75 

particularly when r* _< 0.4. As has been pointed out in the previous 
section, this is attributable to the nonorthgonality of the mapping 
coordinate system at these extreme conditions. Nevertheless, the 
results illustrate the varying influences of s* and r*. For 8" < 0.4, 
the fRe  values increase monotonically as r* increases and tend to 
attain almost constant values for r*_> 0.6. On the contrary, for 
s*_>0.4, the fRe  values tend to decrease considerably with 
increasing r*. Sharp reduction in friction factor occurs when the 
eccentricity is large in annuli with small radius ratios, 
0.1 < r* < 0.5. Although not presented here, this decrese is even 
greater for s* > 0.7 (Shah and Bhatti 1987). 

From the Nusselt number results tabulated in Table 2, the effects 
of the thermal boundary condition on the inner surface and the 
eccentricity and aspect ratio of  the annular duct are evident. It is 

observed that the Nusselt number generally decreases with 
increasing values of s* and r*. Also, the HI boundary condition 
sustains higher heat transfer coefficients compared to the T 
boundary condition. Because the wall temperature is higher and 
"rims away" from the bulk fluid temperature with the HI 
condition, higher wall temperature gradients, and, hence, higher 
heat transfer coefficients are obtained; with the T condition, the 
bulk temperature approaches the wall temperature as the flow 
becomes fully developed. This difference, however, is significant 
only for small to moderate eccentricities, and it reverses for large 5" 
in small diameter ratio (r* _< 0.5) ducts. For example, with r* = 0.4 
and 8"> 0.4, the NU;.T value approaches an asymptotic constant 
(Nui.r ~ 2.8) which is higher than the corresponding value for 
Nui.m(-~2.36). Once again, these anomalies are primarily 
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Table 2 isothermal friction factor and Nusselt numbers for fully developed laminar flow in 
eccentric annuli. 

fRe Nu~ Nu~  

Present Shah and Present Present 
r* s* study London (1978) study study 

0.75 0.00 23.967 23.967 5.146 5.593 
0.05 23.877 23.878 4.483 5.485 
0.20 22.603 22.625 2.947 4.304 
0.40 19.309 19.375 1.979 2,768 
0.60 15.540 15,646 1.524 1.936 

0.60 0.00 23.896 23.897 5.443 5,884 
0.05 23,805 23.811 4.916 5,772 
0.20 22.521 22.587 3.370 4,549 
0.40 19.213 19,415 2.355 2.930 
0.60 15.446 15,770 1.887 2.061 

0.50 0.00 23.811 23.813 5.733 6.162 
0.05 23.720 23.729 5.306 6.048 
0.20 22.423 22.541 3.760 4.788 
0.40 19.094 19,458 2.709 3.113 
0.60 15.322 15,909 2.244 2.194 

0.40 0.00 23.679 23,678 6.148 6.552 
0.05 23.585 23.598 5.825 6.436 
0.20 22.265 22.465 4.307 5.157 
0.40 18.894 19.515 3.223 3.387 
0.60 15.095 16.107 2.806 2.362 

0.25 0.00 23.302 23.302 7.343 7.728 
0.05 23.203 23.231 7.143 7.606 
0.20 21.809 22.234 5.778 6.204 
0.40 18.267 19.615 4.769 4.081 
0.60 14.295 16.558 4.998 2.605 

f 
l , i ~ i s i = , i : i , i i i , , i I i i J i i = i , i i i i i 

boundary condition 
1 st kind 
2nd kind 

eeses 3rd kind (present study) 
t * * ~ .  4fh klnd 
o o o o o  modified 5,h klnd (present s dy) 

r* = 0.4 tr~ = 0.6 

R I  O = = , = , t I t I a I = = I I I I I I = t i , , , i i i I I I I I 

• 0 .2 0 .4  0 .6  
~ s  

Figure 8 Comparison of Nusselt number result of present study with 
those for fundamental boundary conditions of 1st, 2nd, and 4th kind 
(from Shah and London 1978) 

attributable to the flow maldistribution and consequent distortions 
in the temperature field around the annulus as 8* increases and r* 
decreases. 

A comparison of the present Nu results (boundary conditions of 
the 3rd and modified 5th kind) with those for boundary conditions 
of the 1st, and 4th kind (Shah and London 1978) is given in Figure 
8. In all cases, except with the 1st and 4th kind, the Nusselt number 
decreases with increasing eccentricity for a given r*; in the other 
two cases, Nu increases. Furtbermore, the results for T and I-I1 
conditions on the inner walls with outer walls insulated (the 
more practical representation for heat exchanger design) 
are higher than those of the other fundamental boundary 
conditions. 
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